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three-dimensional microarchitecture of entheseal changes: 
preliminary study of human radial tuberosity
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ABStrAct                        Entheseal changes (EC), alterations at insertion sites on the bones, may be related 
to mechanical stress among other causes, and are thus used for decades to reconstruct the activi-
ties of human past populations. They can be characterised by focal changes in robusticity and 
variable pattern of osteolysis and osteoformation observable on dry bone. This preliminary study 
aims to analyse the microstructural characteristics of the underlying bone to clarify the nature 
of the changes in bone microarchitecture reflecting the macroscopic changes identifiable on 
the surface of the enthesis. We studied the right radii of two Saharian adult individuals, dating 
from Neolithic (Hassi-el-Abiod, Mali, 7 000 years BP). One has a morphologically normal bicipital 
tuberosity while the second one shows EC. Micro-computed tomodensitometric acquisitions and 
3D reconstructions were performed to characterise cancellous and cortical bone microarchi-
tecture of these two entheses. 3D imaging appears relevant for studying microstructure of EC 
among past populations. Our methodology reveals at this preliminary step clear differences of 
canal network organisation of cortical bone between the two studied entheses. This work comes 
preliminary to a broader study on a historically and archaeologically documented population 
of Hungarian horse archers of the Honfoglalás or Conquest period (Xth century). 
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introduction

Entheses are the insertion sites of tendons, ligaments and joint 
capsules on the bone. A distinction can be made between two 
types of entheses, fibrous entheses mainly at the metaphyseal 
or diaphyseal areas, and fibrocartilaginous entheses, including 
the insertions at the epiphyses and processes of long bones 
but also the short bones of hands and feet as well as several 
ligaments in the spine (Benjamin and Ralphs 1998; Benjamin 
and McGonagle 2001). 

Among entheseal changes (EC), enthesopathies are de-
fined by pathological modifications at the insertion sites (La 
Cava 1959; Niepel and Sit’aj 1979; Lagier 1991; Benjamin et 
al. 2002). They result in bone alterations visually observable 
on dry bone. It takes the form of osteophytic formations on 
the margin of the enthesis and/or an erosive area (porosity/

foramina/cysts) on its surface (eg. Hawkey and Merbs 1995; 
Robb 1998; Mariotti et al. 2004; Villotte 2009). 

Entheseal changes can be due to several causes and can be 
related to age (that is strongly correlated with EC), to sex or 
some metabolic or inflammatory diseases, but these changes 
may also be caused by mechanical stress (e.g. Dutour 1992; 
Claudepierre and Voisin 2005; Slobodin et al. 2007; Villotte 
and Kacki 2009; Jurmain and Villotte 2010; Paja et al. 2010; 
Jurmain et al. 2012; Milella et al. 2012; Alves Cardoso and 
Henderson 2013; Henderson and Alves Cardoso 2013; Niin-
imäki and Baiges Sotos 2013; Niinimäki et al. 2013; Villotte 
and Knüsel 2013; Santana Cabrera et al. 2015). Indeed, one 
of the fundamental roles of an enthesis is stress dissipation, 
distributing load forces across the bone (Benjamin and McGo-
nagle 2001). Therefore, EC can in certain conditions indicate 
an intense muscle solicitation during life, and so have been 
considered for decades as occupational stress markers, with 
the perspective of reconstructing activities and lifestyles of 
ancient populations (eg. Dutour 1986; Hawkey and Merbs 
1995; Pálfi 1997; Peterson 1998; Molnar 2006; Rojas-
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Sepúlveda and Dutour 2009; Villotte et al. 2010b; Baker et 
al. 2012). This question is fundamental in the field of bioar-
chaeology and is even considered by some scholars as a sort 
of “Holy Grail”, as Jurmain et al. (2012) pointed out.

Entheses and their changes have been extensively studied, 
with clinical, radiological, histological and osteological meth-
ods at the macroscopic and microscopic scales (e.g. Cooper 
and Misol 1970; Resnick and Niwayama 1983; Olivieri et 
al. 1998; Benjamin et al. 2002; Claudepierre and Voisin 
2005; Maffulli et al. 2005; Benjamin et al. 2008; Villotte 
2009; Junno et al. 2011; Schlecht 2012; Henderson 2013a). 
Recently, the 3D approach has begun to be used as a tool 
for studying the EC, but researches focus only on entheseal 
surfaces (Pany et al. 2009; Henderson 2013b; Noldner and 
Edgar 2013; Nolte and Wilczak 2013). We chose here the 
complementary use of micro-tomodensitometry investigation 
and 3D reconstructions, which have been little applied to oc-
cupational markers so far: in their study Djukic et al. (2015) 
used micro-tomodensitometry for performing metric analyses 
of bone microarchitecture on several lower limb entheses, to 
study the relationship between macro- and microstructure, 
as well as between cortical and trabecular parameters at 
entheseal level. They showed a lack of correlation between 
macroscopic scoring systems with microarchitecture at the 
entheses. 

Our preliminary study takes its part in the framework 
of a broader one, which will focus on bioanthropology and 
archaeology of mounted archers of the Hungarian Conquest 
period, so called Honfoglalás (Xth century AD). Our aim 
is to explore bone microarchitecture of a morphologically 
normal insertion and EC at the radial tuberosity, hypotheti-
cally likely to be related to repeated movement involved in 
archery, among other activities (Dutour 1986; Thomas 2014; 
Tihanyi et al. 2015) in order to present the observations that 
can be performed this way. In the long run, our purpose will 
be to specify the microstructural changes in the underlying 
bone that reflect the surface bone changes resulting from 
mechanical stress. The ability to distinguish, in a reliable 
way, mechanical enthesopathies from EC resulting from 
other aetiologies, would allow us to bring new elements to 
questions as: who were mounted archers? Did they belong to 
a special class among the population? At what age did they 
begin training for war? Did the women practiced horseback 
riding and archery as well? 

Furthermore, this study constitutes a first test of the ap-
plication of the methodology to EC, which we will employ for 
larger investigations. We performed bone microarchitectural 
analyses at entheses sites, with the help of microtomodensi-
tometry and 3D imaging (Coqueugniot et al. 2010; Colombo 
2014). The goal of this paper is to open up the field of oc-
cupational marker studies to innovative methodological ap-
proaches such as bone microstructural analyses.

Materials and Methods

We focused here on the radial tuberosity, which is the inser-
tion site of biceps brachii, and one of the fibrocartilaginous 
entheses (Benjamin et al. 1986). These are the most docu-
mented group of entheses in the attempt to reconstruct past 
activities (Havelková and Villotte 2007; Villotte 2009; Villotte 
et al. 2010a; Weiss 2012; Henderson et al. 2013; Villotte and 
Knüsel 2013; Thomas 2014). The biceps brachii is one of the 
flexor and supinator muscles of the elbow, and its changes 
at insertion site on the radius were previously interpreted to 
be linked with occupation (Dutour 1986; Hawkey and Merbs 
1995; Pálfi 1997; Robb 1998; Molnar 2006; Weiss 2007; 
Baker et al. 2012; Thomas 2014; Tihanyi et al. 2015). For 
example, agricultural and building activities, and especially 
carrying heavy loads, have revealed to potentially cause EC 
at the bicipital tuberosity (Commandré 1977; Galera and Gar-
ralda 1993; Al-Oumaoui et al. 2004; Havelková et al. 2011; 
Rojas-Sepúlveda and Dutour 2014). 

We relied on two adult individuals from Hassi-el-Abiod 
(northern Mali), belonging to a Neolithic population of hunt-
ers-fishermen-gatherers who lived close to lake or wetland 
areas about 7 000 BP. The anthropological study performed 
by one of us (OD) in 1986 had already identified EC on upper 
limbs in this population (Dutour 1986, 1989). 

Both right radii of those subjects have been considered 
(Fig. 1) and described with the terminology used in the Coim-
bra method (Henderson et al. 2013). Nevertheless, consider-
ing the weak number of bones, the scoring of each feature 
did not seem pertinent. The first one (MN10/H3) shows a 
normal, regular and smooth enthesis, without any trace of 
bone formation or erosion at the margin and entheseal sur-
face, nor porosity or cavitation. The second one (MN36/H18) 
presents changes at the insertion level: the margin is irregular 
and characterised by a sharp crest (medial and proximal), 
heightened by a marginal enthesophyte, while the surface is 
also irregular, with erosion on more than half the surface and 
a little macro-porosity.

In order to investigate bone microarchitecture of the 
entheses, we used microtomodensitometry, which provides, 
in a non-destructive way, information on the biomechanical 
properties of bone and the characteristics of bone remodel-
ling through a three-dimensional approach (eg. Lespesailles 
et al. 2006; Colombo 2014; Rittemard et al. 2014; Khoury 
et al. 2015). 

We applied the micro-computed tomography (micro-
CT) acquisitions processing chain (Coqueugniot et al. 2011) 
developed in research unit PACEA (UMR 5199, CNRS/
University of Bordeaux, Pessac, France), including image 
processing with TIVMI® (Treatment and Increased Vision 
for Medical Imaging) software. It is based on the HMH (Half 
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Maximum Height) 3D algorithm, which allows the software 
to automatically identify the optimal limits between each 
material such as bone and air (Spoor et al. 1993; Dutailly et 
al. 2009). The radii were CT scanned at PLACAMAT (UMS 
3626, CNRS/University of Bordeaux, Pessac, France), on 
a GE® Phoenix v|tome|x s, with an isotropic resolution of 
13.5 µm. We focused the acquisitions on the enthesis area. 
The micro-CT was operated at 120 kV and 110 µA, with a 
500 ms integration time per projection. 

The data, which are slices in the three plans of space, were 
then treated with TIVMI® software to obtain 3D reconstruc-
tions from their superposition. 

Several preliminary steps were required in order to analyse 
the microarchitecture of the entheses. We realised a primary 
3D reconstruction of the whole entheses in order to globally 
visualise entheseal surface for selecting regions of interest 
(ROIs), on which observations were then performed (Fig. 2). 

In both radii, we selected a portion localised in the proximal 
third of the enthesis, whose height was about 10% of the total 
enthesis height, which was visually estimated regarding the 
superior and inferior portions of the margin (clearly observ-
able for both entheses) and considered in terms of number 
of horizontal slices between these limits. It corresponds to 
bounding boxes with dimensions of 9.6 x 12.3 x 2 mm for 
the normal enthesis and 7.3 x 13.2 x 2 mm for the other one, 
located from 23 to 33% of the entheses height, starting from 
the proximal margin. In addition, the ROIs were selected 
on the medial half of the tuberosity, where biceps brachii’s 
tendon does attach to the bone. We also ensured that these 
ROIs were long enough to catch a portion on the outside of 
the entheses, in order to investigate the transition between 
normal diaphyseal bone (on the medial-posterior face of the 
bone) and the entheses. We selected a second zone of interest 
in the case showing EC, at the upper margin of the enthesis, 

Figure 1. Bicipital tuberosity on the two selected right radii. Normal enthesis presents smooth and regular surface and margin (left) and other 
one exhibits irregularities, porotic alterations and enthesophytes (right). 
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focusing on an enthesophyte. The corresponding bounding 
box dimensions are 5.5 x 8.4 x 2.4 mm and its height is about 
12.5% of the total enthesis height. 

We then operated a segmentation according to the grey 
level values of each component. It consists in the definition 
of subsets or materials, so the software is able to distinguish 
bone from empty canals and medullary cavities, external 
vacuum and sedimentary residues such as sand. In this case, 
due to the proximity of grey level values between bone and 
sediment, segmentation was manually performed. Subse-
quently, a binary image was obtained thanks to a double 
threshold. It consists of white pixels (the elements we want to 
keep in the 3D reconstruction) and black pixels (the elements 
to exclude). Finally, using a HMH algorithm, binary slices 
were superposed to reconstruct in three dimensions either 

the bone or, on the contrary, the canal system of the cortical 
bone and the intertrabecular spaces of the cancellous bone, 
to observe their three-dimensional organisation. 

This methodology, using micro-CT and 3D reconstruc-
tions with TIVMI® software program, was already performed 
in a recent research focusing on trabecular bone microarchi-
tecture during growth, with good repeatability (Colombo 
2014). 

results

We performed a visual morphoscopic analysis from these 3D 
reconstructed regions of interest. 

Figure 2. 3D reconstructions of both entheses showing the regions of interest (ROIs). Bounding boxes of the selected regions of interest appear 
in blue on the reconstructions. For the enthesis with changes, two levels of analysis were selected, one on the entheseal surface and medial 
margin (ROI 1), and the other at the proximal margin, focusing on the enthesophytic crest (ROI 2).
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3d micro-architecture of normal enthesis

First, we observed in 3D reconstruction of the bone at enthe-
ses, the main characteristics of the normal structure, notably 
described from histologic sections (Benjamin et al. 1986; 
Claudepierre and Voisin 2005). The volume of the enthesis 
was limited by the endosteal wall of the medullary canal of 
the shaft (Fig. 3). Medullary cavities occupied by bone mar-
row and vessels were irregular in shape and size and were in-
terconnected. Moreover, we observed that the enthesis mainly 
consists of trabecular bone while the cortical bone turns out 
very thin. Bone marrow extensions and thinning of cortical 
bone at entheses have been previously described in literature 
(Benjamin et al. 2002; Flemming et al. 2003; Benjamin et al. 
2007; Shaw and Benjamin 2007; Nojiri et al. 2009). 

Second, as regards the 3D organisation of the canal net-
work of compact bone, three distinct areas were observable 
(Fig. 4): 

1) outside the enthesis, on the medial-posterior face of 
the diaphysis, we observed a normal haversian organisation, 
with thin and vertical Havers’ and transversal Volkmann’s 
canals. 

2) at the medial edge, we observed a horizontalisation 
of peripheral canals, while the canals on the inner edge of 
compact bone tend to preserve their longitudinal direction. 
Some canals were also thicker, in both directions. 

3) on the anterior face of the enthesis, we noticed that the 
canals were differently organised, showing regular oblique 
interconnections. The global morphology could be described 
as a “trellis” (or lattice) aspect. 

3d micro-architecture of entheseal changes

Regarding the first ROI, located on the medial entheseal sur-
face and margin, similar observations to normal enthesis were 

Figure 3. 3D bone reconstruction of ROI at normal enthesis. It highlights the “trabecular aspect” of the entheseal volume and consequently 
the relative thinning of the cortical bone at the level of the normal tuberosity.
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performed on 3D bone reconstruction (Fig. 5). Medullary 
cavities communicated with the medullary canal of the dia-
physis and had extended towards the exterior. In contrast, the 
cortical bone appeared even thinner than the normal aspect. 
This thinning was particularly pronounced at some places. 
The external enthesis surface was irregular and it seemed 
that a few porosities were in connection with the underlying 
medullary cavities expended inside the enthesis volume.

The 3D reconstruction of the canal network showed 
similarities but also differences with the normal enthesis           
(Fig. 6 ). We observed thin and longitudinal canals on the 
medial-posterior face of the diaphysis. Then, at the medial 
edge of the enthesis, fewer canals were observable. They 
were not as longitudinally orientated as at the diaphysis area. 
Furthermore, the horizontal orientation observable at the area 
2 of the normal enthesis could not be observed here.

Moreover, at the anterior face of the enthesis, the “trellis” 

organisation of the canals was not present either. Instead, it 
seemed that we had a non-organised bone, with thick and 
flattened canals. 

Regarding the second ROI (Fig. 7), located at the proximal 
enthesophyte zone, we observed an apparent invasion of the 
compact bone area by spaces which seemed in relation to the 
medullary cavities. The trabecular bone was also organised 
in rows, parallel to the surface of the enthesis. 

Concerning the characteristics of the canals of cortical 
bone (Fig. 7), we observed haversian canals on the medial-
posterior face of the diaphysis and on the anterior face too, 
just above the origin of the enthesophyte. This one respected 
neither the haversian organisation nor the “trellis” organisa-
tion. The canals were thick, flattened in the antero-posterior 
plan and the enthesophyte could thus be described as a non-
organised bone production. It pleads for a primary ossifica-
tion type, confirming that the marginal relief delineating the 

Figure 4. 3D canal network reconstruction of ROI at normal enthesis. Three areas are observable: 1) normal haversian organisation; 2) horizon-
talisation and thickening of vascular canals; 3) “trellis” aspect of the canal organisation.
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eroded entheseal surface is not only due to erosion but to 
enthesophytic production. The global mechanism of entheso-
phyte ossification was described in literature: Benjamin et 
al. (2006) and Shaw and Benjamin (2007) made difference 
between tendon calcification and endochondral ossification, 
highlighting through vascularisation the possible role of bone 
marrow in the ossification process. In our case, medullar cavi-
ties are observed at the enthesophyte origin. 

discussion

As results of this preliminary study, we notice a different ca-
nal organisation at the enthesis with EC (both on the medial 
surface and the enthesophyte) from the normal enthesis. The 
aim of the present paper is not to validate the hypothesis of a 
mechanical origin linked to intense muscle load, but to present 

the results of the first observations of microarchitecture of EC 
at the radial tuberosity, in comparison with a normal enthesis. 
What we have obtained here, with this exploratory approach, 
constitutes a promising preparatory work for larger studies, 
which will allow us to multiply the observations, and to test 
and validate our methodology. We expect to observe common 
and recurring features on a large number of normal insertions 
and entheseal changes. To do so, we will select samples taking 
account of the numerous biases inherent in studies aiming to 
reconstruct activities in ancient populations (e.g. Dutour 1992, 
2000; Villotte 2009; Meyer et al. 2011; Jurmain et al. 2012; 
Milella et al. 2012; Schrader 2012; Alves Cardoso and Hend-
erson 2013; Perréard Lopreno et al. 2013; Thomas 2014). In 
order to make comparisons with more objective criteria, we 
will also perform a skeletonisation method on smaller regions 
of the 3D reconstructions. It consists in making an object 
thinner (1 voxel wide) to keep its basic structure. It is based 

Figure 5. 3D bone reconstruction of ROI at EC surface. Expansion of trabecular organisation in the entheseal volume. Extreme thinning of the 
cortical bone at the level of the EC surface. Some porosities appear to be connected with medullary cavities. 
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on the sequential 3D curve-thinning algorithm developed by 
Palágyi et al. (2001) and implemented in TIVMI® software 
program. We will this way obtain a simplified modelling of 
the cortical microstructure allowing to determine qualita-
tive and quantitative parameters (Colombo 2014). Once the 
method is validated for the study of EC in particular, we will 
be able to perform analyses on archaeological Hungarian 
material, consisting of horse archers of the tenth century, the 
Honfoglalás period. They left numerous cemeteries across 
the Carpathian Basin, where we can often discover archery-
related items (such as bows, arrows and quivers) and even 
sometimes the horses in association with the skeletons within 
the graves (e.g. Révész 1996, 2003; Kovács 2005; Langó 
2005; Révész 2005; Langó et al. 2011; Bíró 2014; Révész 
2014). This enables us to put entheseal changes in relation 
to the archaeological goods, which is a decisive condition to 
discuss the activities of ancient populations (Thomas 2014). 
Hungarian skeletons have previously demonstrated their po-

tential for this type of studies (Pap 1985; Józsa et al. 1991; 
Pálfi 1992; Pálfi and Dutour 1996; Pálfi et al. 1996; Józsa et 
al. 2004; Tihanyi et al. 2015). This is a population of major 
interest, being well documented, and one of the most perti-
nent for methodological work on archaeological collections, 
especially for lifestyle reconstruction studies.
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