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Nitric oxide as a potent signalling molecule in plants
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ABSTRACT

relation with the development of root architecture.

A potent signalling molecule is supposed to be effective in
fast responses to environmental or intracellular stimuli by
increasing and decreasing its concentration, its reactions
should be specific for the target molecules, and its appear-
ance should be temporally and locally adequate. Nitric oxide
seems to be a proper signalling molecule, although its sources
and production, as well as the ways of its removal are not
clearly understood in plants. Recently two reviews have been
published covering these topics (Neill et al. 2008; Wilson et
al. 2008), therefore in this present overlook we will consider
different aspects of NO signalization under abiotic stress
conditions and in root development.

Nitric oxide is a free radical, diffusible, lipophylic gas
which has three forms in both animals and plants: NO* (ni-
trosonium cation), NO" (nitroxyl anion) and NO- (nitric oxide
radical), often referred to as reactive nitrogen species (RNS)
and nitrosative stress. The term RNS is not recognised widely
in contrast to the term reactive oxygen species (ROS), though
as distinct dynamic elements they were synthetized together
with a third reactive family, the reactive sulphur species
(RSS), by Yamasaki (2005).

Further RNS are the derivatives of S-nitrosylation and nit-
rosation reactions with thiol-contaning substances, especially
reactive cysteine thiol moieties and iron-sulphur clusters, as
well as with protein tyrosine residues (Espey et al. 2002;
Wang et al. 2006; Corpas et al. 2007). In plants, probably
the most frequent S-nitrosylated compound is S-nitrosoglu-
tathione (GSNO) which serves as NO-donor to subsequent
nitrosylation reactions. In Arabidopsis, a great number of S-
nitrosylated proteins were identified like metabolic enzymes,
proteins participating in photosynthesis and in redox reactions
etc. (Lindermayr et al. 2005). Since these reactions are revers-
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The role of NO in stress responses in plants came in the focus of plant science in
the last decade. Better understanding of plant stress responses is very important in the light
of increasing intensities of stressors like drought, salinity and others, due to global climatic
and environmental changes. Our knowledge, concerning signal transduction pathways is very
scarce, especially in terms of NO-related alterations in proteins and gene expression as well as
regulation. In this review we consider different NO-reactions, signalling pathways, NO — plant
hormone interactions and NO-induced and -mediated signalization under osmotic stress in
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ible (e.g. in vitro by using dithiotreitol, DTT), investigation of
S-nitrosylated and nitrosated components may provide insight
into NO-related signalling pathways.

Our previous experiments also show that NO is an active
signal component in different stress responses like drought/
osmotic stress and heavy metal load. Interestingly, the ap-
pearance of NO, as the function of time and spatial localiza-
tion in roots, suggests different mechanisms involved in NO
production and in the role of signal transduction (Bartha et
al. 2005; Kolbert et al. 2005; Kolbert et al. 2008b). Thus, in
the case of Cu** treatments of Pisum sativum and Brassica
Jjuncea, an early NO burst was obtained 2 h after subjecting
the plants to the metal ions whereas fast NO-production did
not appear after cadmium treatment (Bartha et al. 2005).
The source of NO in this case may be GSNO, since copper
can catalyze the decomposition of RS-NO by redox reaction
(redox potential for Cu**/Cu* E| = +0.15 V) either by the
one-electron reduction reaction by the monovalent species,
or with the divalent copper, in the presence of oxidizer (Vanin
and van Faassen 2007). Similar, but not identical reactions
could be expected to occur by iron, however, the high redox
potential for Fe’*/Fe** (E, = 0.77 V) leads to the formation
of low molecular weight dinitrosyl iron complexes (DNICs)
which presence is also proved in plants. DNICs can serve as
source and storage of NO and also participate in plant iron
metabolism (Graziano and Lamattina 2007). In this way, the
kinetics of early NO transients seem to depend on the source
of NO. For instance, very early NO burst, developed in 30
min, was observed in response to Fe?*-treatment in Arabi-
dopsis, preceding ATFerID gene expression (Arnaud et al.
2006), or, as mentioined before, in the case Cu** treatments
of Pisum sativum and Brassica juncea (Bartha et al. 2005).
In addition, these transition metal ions, in the Fenton reaction
with H,O,, produce hydroxyl radicals leading to the formation
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other reactive oxygen species (ROS). Oxidative stress may
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involve NO as well playing a role in drought responses in the
abscisic acid pathway in wheat root (Zhao et al. 2001).

Osmotic stress has two components, non-ionic osmotic
and ionic strength. Both stressors evoke oxidative stress as
well, and the close interaction between ROS and RNS is
obvious. In one of our earlier papers we have been focussing
on the co-stress responses in plants, including osmotic stress
hormones like abscisic acid and ethylene — nitric interactions
as well (Leshem et al. 1998). It is clear that the very different
abiotic stressors like UV-B radiation (Barabas et al. 1998),
salinity (Barabas et al. 2000; Rios-Gonzales et al. 2002), or
heavy metals (Fediuc et al. 2002, 2005) all evoke oxidative
stress and changes in antioxidant defence mechanisms.

Different reactive oxygen species, mainly the relative
long-lived and diffusible H,O, can also function as signal-
ling molecule that mediate responses to different stresses
(Vranova et al. 2002, Mittler et al. 2004). In plants, both NO
and H,O, generation are activated by several hormonal and
environmental stimuli to trigger a range of cellular processes
(Desikan et al. 2004). Data have suggested that NO serves to
modulate H,O, production and downregulate its effects on
defence-related gene expression. In a number of responses,
NO and H,0O, generation occur in parallel, or in a short suc-
cession of one another, and it had been shown that they can
act both synergistically and independently (Delledonne et al.
2002; de Pinto et al. 2002; Bright el. 2006).

In addition to their defence-related roles, NO and H,O, are
important endogenous signals in many vital aspects of plant
growth and development such as root growth, root gravitrop-
ism, xylogenesis and seed germination (Pagnussat et al. 2002;
Hu et al. 2005; Bright et al. 2006).

Photosynthetic electron transport and related light-de-
pendent enzyme activities are also targets of NO due to their
thiol residues, transition metal components and iron-sulphur
clusters. The role of nitric oxide (NO) in photosynthesis is,
however, poorly understood as indicated by a number of
studies in this field with often conflicting results. As vari-
ous NO donors may be the primary source of discrepancies,
in our recent study a set of NO donors and its scavengers
were applied, and the effect of exogenous NO was examined
on photosynthetic electron transport in vivo as determined
by chlorophyll fluorescence of pea (Pisum sativum) leaves
(Wodala et al. 2005, 2008). Sodium nitroprusside-induced
changes were shown to be mediated partly by cyanide, and
S-nitroso-N-acetylpenicillinamine provided low yields of
NO. However, the effects of S-nitrosoglutathione were in-
ferred exclusively by NO, which made it an ideal choice for
this study. Q,  reoxidation kinetics showed that NO slowed
down electron transfer between Q, and Q,, and inhibited
charge recombination reactions of Q,” with the S, state of
the water-oxidizing complex in photosystem II. Consistent
with these results, chlorophyll fluorescence induction sug-
gested that NO also inhibited steady-state photochemical and

non-photochemical quenching processes. NO also appeared
to modulate reaction-center-associated non-photochemical
quenching.

Different signalling pathways

Recently, increasing attention is directed to the details of func-
tional signalling pathways. It was an important observation,
that NO stimulated cGMP formation in spruce needles (Pfe-
iffer et al. 1994). In addition, NO activates cGMP-dependent
pathway leading to adventious root formation in cucumber
(Pagnussat et al. 2003). Recently, the S-nitrosylation reactions
of NO are emphasized besides the cGMP-related signalling
pathway. In guard cells, outward-rectifying K* cannels seem
to be directly controlled by nitrosylation (Sokolovsky and
Blatt 2004), however, as shown by Distéfano et al. (2008) the
process of stomatal closure involves NO-mediated phospha-
tidic acid accumulation with the implications of phospholi-
pases C and D. A very significant consequence of this route
that it connects to phospholipid signalling pathway.

Further evidence for the involvement S-nitrosylation reac-
tions was published for cadmium stress in pea plants (Barroso
et al. 2006) and for NaCl-salinity in olive leaves (Valderrama
et al. 2007). In the first case the presence of GSNO and the
expression of GSNO-reductase (GSNOR) was shown, in the
latter case increased L-arginine dependent NO-production,
enhanced level of total S-nitrosothiols and tyrosine nitration
of different proteins were found. We note that the arginine-
dependent nitric oxide production by nitric oxide synthase
(NOS) is still a debated question in plants (Kolbert et al.
2008a and references therein). It has been reported that
GSNOR is highly conservative among organisms (Liu et
al., 2001), and glutathione-dependent enzyme formaldehyde
dehydrogenase (FALDH 1.2.1.1) has been demonstrated to
have GSNOR activity.

Several studies, based on plants with altered NO-levels,
have recently provided genetic evidence for the importance
of NO in gene induction. The activities of a variety of nuclear
regulatory proteins are affected dramatically by NO. The
formation of S-nitrosylated proteins seems to be an especially
important mechanism in the regulation of the function/activity
of transcription factors. S-nitrosylated proteins are created
when a cysteine thiol reacts with NO in the presence of an
electron acceptor to form an S-NO bond. Under physiological
conditions this posttranslational modification affects the func-
tion of a wide range of cellular proteins, like stress-related
proteins, signalling proteins, metabolic proteins, and nuclear
regulatory proteins (Griin et al. 2006). In animals, in vitro
activation of purified microsomal glutathione transferase 1
by S-nitrosylation has been reported. The activity of this
enzyme is increased after treatment with N-ethylmaleinimide
(NEM), a sulthydryl alkylating reagent, and is also increased
under conditions of oxidative stress. Preincubation of purified
enzyme with GSNO or the nitric oxide donor, 1,1-diethyl-2-
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Figure 1. Dithiotreitol (DTT) in 10° M concentration reduced nitric oxide (NO) generation in lateral root primordia (A) and the exogenous

auxin-induced lateral root (LR) induction (B).

hydroxy-2-nitrosohydrazine (DEA/NO), resulted in two-fold
increase in enzyme activity (Ji et al. 2002). In Arabidopsis,
one tau group glutathione S-transferase (GST) and one glu-
thatione peroxidase (GPOX) enzymes proved to be target
proteins of S-nitrosylation (Lindermayr et al. 2005). Both
enzymes participate in glutathione dependent antioxidant
defence pathways, thus involved in osmotic stress acclima-
tisation. GSTs have a role in the regeneration of S-thiolated
proteins under oxidative stress (Basantani and Srivastava,
2007) and, according to the results of Kilili et al. (2004) they
can be considered also as stress signal proteins.

The transcription of genes is controlled by transcription
factors, however, their binding affinity to DNA or other pro-
teins can be altered by modifications of their molecule by
phosphorylation and S-nitrosylation. As discussed earlier,
often different genes, involved in a particular mechanism, are
co-regulated. This suggests the possibility for the existence
of common transcription factor binding site in the promoter
region of NO-responsive genes leading to their co-expression
or co-regulation. By screening the promoter regions of such
genes, in Arabidopsis, a large number of genes were found
to be induced, up-regulated or down-regulated in response to
NO treatments (Palmieri et al. 2008).

Interaction of NO with plant hormones

Interaction of NO with different plant hormones is also an
intriguing area which is related to both developmental pro-
cesses and stress responses.

Recently, it was suggested that stress-induced morpho-
genetic responses are controlled by auxin distribution in the
plant (Potters et al. 2007). The question arose if there are
similarities or differences in growth responses of a root sys-
tem under external auxin load and osmotic stress, with focus
on the role of NO in the phenotypic acclimation processes.
Lateral roots are formed in the root pericycle postembryoni-

cally from specially positioned cells allowing broad pheno-
typic plasticity during further growth and development. The
frequency of initiation of lateral roots is in part, determined
by the auxin concentration: exogenous application of auxin
increases the number of lateral roots. Recently it was shown
that indole-3-butyric acid (IBA), a natural auxin besides the
major indole-3-acetic acid (IAA), is involved in root forma-
tion especially in case of adventitious rooting from stem tissue
(Ludwig-Miiller et al. 2005). Earlier it was reported that the
activity of IBA synthetase is enhanced by osmotic stress as
well as by hormones involved in stress responses (Ludwig-
Miiller et al. 1995). In our recent study, the production of
NO was investigated in the processes of indole-3-butyric
acid (IBA)-induced lateral root (LR) initiation and primary
root elongation as compared to those under osmotic stress
conditions. Using IBA and polyethylene glycol as osmotic
agent in broad concentration range during the time period
of stress response, as well as NO scavenger agent, different
roles of NO could be distinguished under these conditions
(Kolbert et al. 2008b). Time-dependent properties of rooting
processes and NO generation (Kolbert et al. 2008b) showed
similarities between the two phenomena, i.e. the effect of 107
M IBA on lateral root number and NO fluorescence appeared
after 48-hour treatment in both cases. The similar temporal
formation of auxin- induced NO synthesis and LR initiation
suggested a functional relation between these processes which
hypothesis was confirmed by the result that NO fluorescence
was strongly linked to auxin level in roots.

During osmotic stress, however, the time dependence of
nitric oxide development showed significant difference as
compared to that of IBA-treated roots, since the appearance
of lateral initials was preceded by a transient burst of NO.
This early phase of NO generation under osmotic stress,
culminating at 24 h, was clearly distinguishable from that
which accompanied LR initiation under both osmotic and
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IBA treatments. The source and the role of this NO transient
are certainly different from those of the constant and steady
NO phase, which start after 48 hours of the treatments, when
the transient one already has decayed. When the osmotic
stress-induced NO burst was eliminated by the NO-scavenger
cPTIO, less LRs were formed than in control and osmotic
stressed roots, indicating that the early NO burst (“stress-
NO”) is necessary for the osmotic stress-induced lateral root
formation. The role of NO in auxin-mediated activation of
cell division and embryogenic cell formation was pointed
out earlier by Otvos et al. (2005). Our preliminary results
indicate that in the LR formation S-nitrosylated signaliza-
tion takes place, since under reducing environment (in the
presence of DTT, Cleland 1964) both NO production and
LR development were hindered in pea plants (Fig. 1AB.). It
has to be mentioned that although DTT may influence many
target proteins, however, its effect is not universally inhibitory
(Chen and Qi 2007).

Taken together, literature data and our latest results refer
to the different sources and localization of NO in the signal
transduction pathways, i.e. it seems that NO is signalling
in the early steps in stress responses followed by post-
translational modifications of proteins, finally leading to
gene regulation (Durner et al. 1998; Griin et al. 2006; Serpa
et al. 2007).

Conclusion

Both environmental and endogenous factors influence the
development of root architecture (Zhang et al. 1999; Malamy
2005; Malamy and Ryan 2001). Interplay between plant hor-
mones like auxin, cytokinins and signalling substances, e.g.
nitric oxide (NO), determine the growth of primary roots and
initiation of lateral roots (Malamy and Benfey 1997; Correa-
Aragunde et al. 2004; Kolbert et al. 2005). Stress-induced
morphogenetic responses, in general, are controlled by auxin
distribution in the plant and reactive oxygen species are part
of the signalization between the stress and the morphogenetic
response (Potters et al. 2007). Since the signalling pathways of
ROS and RNS may interplay, the early appearance of the NO
transient can be enrolled into the signal transduction pathway
towards an altered root architecture which has significance in
the phenotypic adaptation under drought conditions.
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