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ABSTRACT                        Plants differ from animals in many aspects, but the important may be that plants 
are more easily influenced by environment than animals. Plants have a series of fine mechanisms 
for responding to environmental changes, which has been established during their long-pe-
riod evolution and artificial domestication. These mechanisms are involved in many aspects of 
anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, 
in which the adaptive machinery related to molecular biology is the most important. The 
elucidation of it will extremely and purposefully promote the sustainable utilization of plant 
resources and make the best use of its current potential under different scales. This molecular 
mechanism at least include environmental signal recognition (input), signal transduction (cas-
cades of biochemical reactions are involved in this process), signal output, signal responses and 
phenotype realization, which is a multi-dimensional network system and contain many levels of 
gene expression and regulation. We will focus on the molecular adaptive machinery of plants 
under abiotic stresses and draw a possible blueprint for it. Meanwhile, the issues and perspec-
tives are also discussed. Acta Biol Szeged 50(1-2):1-9 (2006)
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Human being has stepped into the 21th century, during which 
sustainable - healthy utilization for environment and resources 
and its own health concerns are the most important issues 
(Rosenberg et al. 1993). These issues are tightly linked with 
agriculture (food) and eco-environment, in which biology, in 
particular plant biology plays the greatest role, because plants 
offer the globe its only renewable resource of food, build-
ing material and energy and thus plant biology is the most 
powerful tool to reasonably use natural resources (Bazzaz 
2001; Charlesworth et al. 2001; Agraval et al. 2003; Anand 
et al. 2003; Chaves et al. 2003; Munns 2003, 2005; Shao et 
al. 2003, 2005; Angela 2004; Arnholdt-Schmitt 2004; Brian 
et al. 2004). In the broad field of plant biology, its core is 
the study for life activities at molecular level (mainly DNA 
and protein macromolecules), whose interactions at various 
biointerfaces at different scales are quite important to keep 
a steady state between plants and changing environment, 
especially adverse surroundings (Doebley and Lukens 1998; 
Avramova 2002; Kreps et al. 2002; Ambros et al. 2003; 

Chaves et al. 2003, 2004; Shao et al. 2003, 2004, 2005a-d; 
Beer and Tavazoie 2004; Casati and Walbot 2004; Chin-
nusamy et al.2004; European Commission 2004; Jiang and 
Zhang 2004; Ashraf and Chu et al. 2005; Foolad 2006. So, 
adaptation in plants is an important and timely topic in basic 
and applied biology (Bonnie et al. 1998; Eckardt et al. 2001; 
Dufty et al. 2002; Brill and Watson 2004; Castle et al. 2004; 
David et al. 2004; Editor’s choice 2004; Hiral et al.2004; Ma 
2004; Shao et al. 2004; Andrew et al. 2006; Humphreys et al. 
2006). On the one hand, it is very interesting to understand 
interaction between plants and their environment. On the 
other hand and in view of the needs for human life, we more 
want to create crop plants that are able to confront success-
fully unfavorable natural conditions (Fischer et al. 2000; Chen 
et al. 2002; Doelle 2002; Brill and Watson 2004; Capell et 
al. 2004; Casu et al. 2004; Costa et al. 2004; Delessert et al. 
2004; De Ronde et al. 2004). The main aim in plant breed-
ing is to obtain plants that combine higher yields, reliable 
yield stability, better quality and obvious characters resisting 
stresses (abiotic and biotic) over years and locations (Liu et 
al. 2000; Chen et al. 2002; Fiehn 2002; Gesch et al. 2002; 
Graves and Haystead 2002; Castle et al. 2004; Chen and Gal-
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lie 2004; Glombitza et al. 2004; Hao et al. 2004; Lu and Chen 
2004; Liu and Li 2005; Grennan 2006). However, in addition 
to biotic stress factors, disturbances of extreme or even mild 
abiotic stress are supposed to account for a high amount of 
unachieved potential in plant production all over the globe 
(Kasuga et al. 1999; Harmer et al. 2000; Johson et al. 2001; 
Halford and Paul 2003; Lokhandle et al. 2003; Shinozaki et al. 
2003; Gregory et al. 2004; Harding et al. 2004; Kennedy and 
Wilson 2004; Liu et al. 2004; Mark and Antony 2005; Shao 
et al. 2006d). Diverse forms of abiotic stresses may occur, 
including drought, cold and freezing, heat, salinity, nutrient 
deficiency, toxic heavy metals, oxidative stress as well as 
oxygen shortage, and mechanical stress (Mlot 1998; Harmer 
et al. 2000; Kwon and Kim 2001; Meyerowitz 2002; Halford 
and Paul 2003; Miyao 2003; Hernandez et al. 2004; Higuchi 
et al. 2004; Kim et al. 2004; Liu and Baird 2004; Medict et 
al. 2004; Munne-Bosch and Alegre 2004; Bartha et al. 2005; 
Kolbert et al. 2005; Grennan 2006; Liu and Bush 2006). 
Although it is accepted that diverse environmental stress fac-
tors never act alone, experimental study of plant responses to 
abiotic stress is normally restricted to plant reactions on iso-
lated stress factors (Neumann 1997; Riechmann et al. 2000; 
Somerville and Dangl 2000; Mette et al. 2002; Noctor et al. 
2002; Pellegrineschi et al. 2002; Travis et al. 2002; Millar et 
al. 2003; Tang et al. 2003; Wang et al. 2003; Manival et al. 
2004; Puhakainen et al. 2004; Rae et al. 2004; Soltani et al. 
2004; Taylor et al. 2004; Philippe et al. 2005; Shao et al. 2005, 
2005a-e, 2006d; Sun et al. 2005; Tan et al. 2006). However, 
it has to be considered that stress always occurs as a complex 
of various interacting environmental factors that contribute 
in varying degrees to the overall stressed phenotype (Zhou 
et al. 2000; Vranova et al. 2002; Yong et al. 2003; Salt 2004; 
Wang et al. 2004; Wei et al. 2004; Winichayakul et al. 2004; 
Yang et al. 2006; Yang and Zhang 2006). Consequently, plants 
usually respond to a unique complex of growth conditions 
(Zhu 2002; Zhu 2003; Zhu T 2003; Zhu et al. 2004; Shao et 
al. 2006). Stress inducers from the abiotic as well as biotic 
world have some common signal and responding pathways 
in plants (Samis et al. 2002; Schlighting 2002; Vranova et 
al. 2002; Shinozaki and Dennis 2003; Tang et al. 2003; Shao 
and Chu 2005; Shao et al. 2006b,f) and thereby have the 
potential to moderate the effect of each other through cross-
talking (Riechmann et al. 2000; Samis et al. 2002; Shigeoka 
et al. 2002; Soltis and Soltis 2003). Further, plants, as sessile 
organisms, have to get alone with the dynamics of transiently 
changing environmental conditions and have the flexibility for 
responding to these complicated changes (Manival et al. 2001; 
Poethig 2001; Pellegrineschi et al. 2002; Munns 2003, 2005; 
Rae et al. 2004), and this has to be achieved at the various 
stages of plant development (Kreps et al. 2002; Meyerowitz 
2002; Hiral et al. 2004; Kim et al. 2004; Mark and Antony 
2005; Shao et al. 2005d; Liu and Bush 2006).

Considering the interacting complexity (at least including 

water movement, solute transport, information exchange, ion 
homeostasis regulation, and other related physico-chemical 
changes) between plants and their surroundings, it is neces-
sary to generalize first the performance of physiological 
functions for plants under soil water stress in this article. We 
then focus on the aspects of plant gene regulatory network 
system, which is the core controlling the interrelationship 
between plants and environment at the molecular level in a 
complex and coordinated manner. Drought will be selected as 
an example of abiotic stresses to illustrate the above issue.

Plant physiological function performance under 
soil water stress

Plants live in soil-plant-atmosphere continuum (SPAC) en-
vironment, and they have to coordinate the mechanisms of 
diverse types to respond to the above changing environment 
at any time for sustainable survival (Dufty et al. 2002; Fiehn 
2002; Glombitza et al. 2004; Gregory et al. 2004; Shao et 
al. 2005). Plant production realization is obtained eventu-
ally through physiological pathways at least at the level of 
individual and community (Charlesworth et al. 2001; Chaves 
et al. 2003; Angela 2004; Arnholdt-Schmitt 2004; Brill and 
Watson 2004; Capell et al. 2004; Chen and Gallie 2004; Shao 
et al. 2005, 2006a,c; Andrew et al. 2006). One molecule, one 
kind of tissue or an organ can not produce any economic yield 
in terms of the need for human being (Soltani et al. 2004; 
Munns 2005; Shao et al. 2005, 2006c).Under the condition 
of ensuring plant survival, plants can produce corresponding 
yield. Water is one of key factors influencing plant produc-
tion and many reports have proved this clearly (Travis et al. 
2002; Salt 2004; Yang and Zhang 2006). Loss of water in soil 
will lead to great reduction in plant production, which has 
been reflected from total grain yield of many countries in the 
world (Doelle 2002; Wang et al. 2003; Shao et al. 2006c,e).
Water is the important material for photosynthetic reactions 
that plants depend on to finish accumulation of photosyn-
thetic products, which are impacted greatly by physiologi-
cal pathways and environmental factors (such as soil water 
supply; Angela 2004; David et al. 2004) Thus, different soil 
water supplying will result in quite different physiological 
pathways, which directly determine the ability for plants to 
make photosynthetic products. Water deficits in soil environ-
ment also influence solute transport (ion and nutrient uptake 
of plants) to larger extent, which effects on photosynthetic 
reactions in plant chloroplasts in many ways (Salama et al. 
1994; Zhu 2002; Halford and Paul 2003; Lokhandle et al. 
2003; Chaves and Oliveira 2004; Costa et al. 2004; Higuchi 
et al. 2004; Salt 2004; Andrew et al. 2006). This is the reason 
that ion homeostasis and redox state have been brought to 
attention (Noctor et al. 2002; Samis et al. 2002; Shigeoka 
et al. 2002; Vranova et al. 2002; Millar et al. 2003; Hard-
ing et al. 2004; Taylor and McAinsh 2004; Grennan 2006). 
The series of the above reactions and processes occurring at 
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different biointerfaces is regulated and controlled by plant 
gene regulatory network system spatially and temporally on 
the basis of responding to plant developmental cue, through 
which plants can elegantly respond to the changing environ-
ment (Hernandez et al. 2004; Grennan 2006). This network 
system has been formed by the interaction between plants and 
environment for a long time of evolution, which will continue 
to evolve with environmental succession (Dufty et al. 2002; 
Gesch et al. 2002; Charlesworth et al. 2004; David et al 2004; 
De Ronde et al. 2004). From the angle of individual plant 
development, Plant Growth Periodicity curve can reflect and 
show the above trend (Doebley and Lukens 1998; Soltani et 
al. 2004; Shao et al. 2005c,e). Besides, plant responses to 
soil water deficits take a “slow-fast-slow” shaped curve in 
terms of main physio-biochemical indices change and this 
is in agreement with Plant Growth Periodicity, which also 
illustrates this fact and wide plasticity for plants (Neumann 
1997; Poethig 2001; Schlighting 2002; Shao et al. 2005a, 
2006a). Surely, concerted expression of corresponding genes 
in plant gene regulatory network system makes it possible that 
we can see the phenotype and phenotype change under given 
temporal-spatial condition (Shinozaki et al. 2003; Shinozaki 
and Dennis 2003; Zhu 2003; Taylor and McAinsh 2004; Shao 
et al. 2006d).

Aspects of plant gene regulatory network 
system

Recent progress in molecular biology (especially, DNA 
microarray), genomics, proteomics and metabolomics has 
provided insight into plant gene regulatory network system, 
which is mainly composed of inducible-genes (environmental 
factors and developmental cues), their expression program-
ming and regulatory elements (cis-element and trans-ele-
ment), corresponding biochemical pathways and diverse 
signal factors (Tang et al. 2003; Wang et al. 2003; Zhu 2003; 
Zhu T 2003; Munns 2005). Under the condition of soil water 
deficits, related stress factors always result in overlapping 
responses, including anatomical, physiological, biochemi-
cal, molecular biological changes, which make plant gene 
regulatory network system more complicated and difficult to 
explore. Much information with respect to this topic is from 
the model plant, Arabidopsis thaliana. Main aspects will be 
illustrated below.

Environmental stress-responsive transcriptional elements

Plants can sense, process, respond to environmental stress and 
activate related-gene expression to increase their resistance to 
stress. Environmental stress-inducible genes can be mainly 
divided into two types in terms of their protein products: 
one type of genes, whose coding products directly confer 
the function of plant cells to resist to environmental stress 
such as LEA protein, anti-freezing protein, osmotic regula-

tory protein, enzymes for synthesizing betaine, proline and 
other osmoregulators; the other type of genes, whose coding 
products play an important role in regulating gene expression 
and signal transduction such as the transcriptional elements 
for sensing and transducing the protein kinases of MAP and 
CDP, bZIP, MYB and others (Liu et al. 2000; Szegletes et al. 
2000; Liu et al. 2004; Lu and Chen 2004; Liu and Bush 2006).
Transcriptional elements are defined as the protein combining 
with the specialized DNA sequence of eukaryotic promot-
ers or the protein having structural characteristics of known 
DNA-combining region, whose main function is to activate 
or suppress transcriptional effect of corresponding genes (Ka-
suga et al. 1999; Liu et al. 2000; Manival et al. 2001; Mette 
et al. 2002; Gregory et al. 2004; Liu and Baird 2004; Shao 
et al. 2005). Up to now, hundreds of transcriptional elements 
of environmental stress-responsive genes in higher plants 
have been isolated, which regulate and control the stress 
reaction related to drought, salinity, cold, pathogen and heat 
(Doebley and Lukens 1998; Tang et al. 2003; Delessert et al. 
2004; Glombitza et al. 2004). In the genome of Arabidopsis 
and rice, they have about 1300-1500 genes for coding tran-
scriptional elements, most of which have not been identified 
functionally. Recent study has shown that the transcriptional 
elements involved in plant stress responses mainly include 
four kinds: APETALA2/EREBP, bZIP, WRKY, and MYB. 
Typical transcriptional elements have been summarized in 
Table1 for reference.

Table 1. Typical transcriptional elements in higher plants.

Plant materials    Factors                   Binding sites/Factor Types

Arabidopsis         ABI5/AtDPBF          ABA response elements(ABREs)/bZIP
   thaliana  
A.thaliana           AtDPBF2                 ABA response elements(ABREs)/bZIP
A.thaliana           AtDPBF3/AREB3     ABA response elements(ABREs)/bZIP
A.thaliana           AtDPBF4     ABA response elements(ABREs)/bZIP
A.thaliana           AtDPBF5/ABF3       ABA response elements(ABREs)/bZIP
A.thaliana           ABF1                       ABA response elements(ABREs)/bZIP 
A.thaliana           ABF2/AREB5           ABA response elements(ABREs)/bZIP
A.thaliana           ABF4/AREB2           ABA response elements(ABREs)/bZIP
A.thaliana           GBF3     ABA response elements(ABREs)/bZIP
A.thaliana           AB53                       RY/sph elements/B3 domain proteins
A.thaliana           ATMTB2                 MTC
A.thaliana           ATHB6                    HD-Zip
A.thaliana           ATHB7                    HD-Zip
A.thaliana           ATHB12                  HD-Zip
A.thaliana           ABI4                        AP2
Oryza                   TRAB1                    ABA response elements(ABREs)/bZIP
Oryza                   OsVPI                     RY/sph elements/B3 domain proteins
Zea mays             VP1                       MYB
Triticum               EmBP-1                   ABA response elements(ABREs)/bZIP
Avena                  AtVPI                      RY/sph elements/B3 domain proteins
Helianthus           DPBF5,-2,-3            ABA response elements(ABREs)/Bzip
Phaseolus            ROM2(repressor)    ABA response elements(ABREs)/Bzip
Phaseolus            PIARF                      RY/sph elements/B3 domain proteins
Craterestinma     Cpvp1                     RY/sph elements/B3 domain proteins
Daucus                 C-ABI3                    RY/sph elements/B3 domain proteins
Populus                PtABI3                   RY/sph elements/B3 domain proteins
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Complexity of plant gene regulatory network system 
specificity and crosstalk

Many transcriptional element families participate in plant 
stress responses, each of which has many members with 
highly-conservative DNA-binding domain, composing a 
complicated, temporal-spatial network system for plant gene 
expression and regulation (Zhu 2003; Zhu T 2003). Different 
members of TGA/OBF families have different DNA-binding 
specificities, protein-protein interaction and expressing pro-
files. Chromatin immunoprecipitation techniques indicated 
that tobacco TGA1a in vivo combined with xenobiotic-re-
sponsive promoters, but could not combine with PR promoter 
as cis-element (Beer and Tavazoie 2004; Chinnusamy et al. 
2004). Arabidopsis TGA2 could be responsive to salicylic 
acid (SA) signal, but not be responsive to xenobiotic stress 
signals. Much analysis of genomic expression profiling by 
DNA microarray indicates that the mRNA coding transcrip-
tional element genes in many plants are usually induced to 
express and accumulated (Avramova 2002; Arnholdt-Schmitt 
2004; Casati and Walbot 2004). Most transcriptional element 
genes involved in plant stress responses have not only com-
pletely different expression profiles, but also some overlap-
ping expression profiles, showing the complexity, specificity 
and crosstalk of plant gene regulatory network system (Bray 
2004; Shao et al. 2005, 2006d). In other words, one kind 
of stress may simultaneously activate many transcriptional 
elements and one transcriptional element may be activated 
by many types of plant stress responses. For instance, CBF3/
DREB1a can be responsive rapidly to cold, at the same time, 
regulated by circadian clock (Harmer et al. 2000; Chen et al. 
2002; Brill and Watson 2004), which reflects the functional 
complement between plant cold-responsive pathway and 
circadian clock-regulated circle in terms of CBF3/DREB1a 
functions. 

Shinozaki et al. (2003) thought that four signal pathways 
were involved in plant drought, cold and salinity responses, 
in which two were ABA-dependent (I and II), and two were 
non-ABA-dependent (III and IV). The process of stress signal 
sensing and transducing, transcriptional regulating, and func-
tional expressing was existent in these pathways. It is obvious 
that transcriptional elements play a central role in the process 
(Liu et al. 2000; Shao et al. 2005, 2006d). Zhu T (2003) 
and Zhu JK (2003) concluded that molecular mechanism of 
plant stress responses to drought and salinity included three 
main steps, i.e. stress signal input, transducing process, and 
regulatory product output through the study of Arabidopsis 
drought and salinity for many years. Results of many genetic 
mutants and key intermediate molecules from his lab sup-
ported his view powerfully. Recent related anti-drought data 
(dynamic change of anti-oxidative enzymes and soil water 
stress threshold) from my lab also proved the point (Shao 
et al. 2005a-e, 2006b,e). From plant developmental context, 
plant responses to environmental stresses have a universal 

law, which has been reflected completely by Plant Growth 
Periodicity curve (Shao et al. 2005c). Our study on dynamic 
changing of wheat anti-oxidative enzymes under soil water 
deficit have indicated that wheat with different genotypes 
responded to soil water stress by taking a “slow-rapid-slow” 
characteristic curve during wheat life cycle (Shao et al. 2005, 
2006b).This is the physiological basis for water-saving agri-
culture and dry land farming,which also provides substantial 
evidence for the above viewpoint (Chaves and Oliveira 2004; 
Munne-Bosch and Alegre 2004; Shao et al. 2006c).

Plant gene regulatory network system and 
plant drought resistance improvement 

Previous gene engineering strategy for plant stress resistance 
was to express one (in most cases) or several stress-
tolerant genes by constitutive or stress-induced promoters 
(Pellegrineschi et al. 2002). For instance by introducing betA 
gene derived from E.coli into tobacco and potato, betaine 
content in the transgenic plants increased to 5 µmol/g (dry 
mass) and tolerance to salt and cold for the transgenic plants 
was improved greatly. The goal of recently-established 
plant gene engineering strategy based on transcriptional 
elements is to improve plant comprehensive resistance 
characters (Puhakainen et al. 2004). Compared with the 
previous traditional method of introducing or improving 
individual functional genes, the new strategy will play more 
important role in plant molecular breeding because modifying 
regulatory activities of a transcriptional element can influence 
functions of many genes, easily reaching the aim of improving 
plant comprehensive resistance to drought, salinity, freezing, 
diseases, UV-B and others (Riechmann et al. 2000; Capell et 
al. 2004; Casati and Walbot 2004). Through constitutively 
overexpressing DERB1A, plant stress-responsive genes, 
Kin1, cor6.6/Kin2, cor15a, cor47/rd17, or d10 got higher 

Table 2. Some examples of the osmotic regulating genes down-
stream in abiotic resistance.

Components           Metabolic Functions                           Gene/Proteins

ROS scavenging      Increase in ROS                 GP, PH, GPX
  scavenging enzymes
Chaperones            Heat-/cold-/salt-shock proteins;         Hsp,Csp,Ssp,DnaJ
  protein folding
Fructan                   Osmoprotection                                 SacB
Trehalose                Osmoprotection                                 Tps;Tpp,trehalase
Glycine betaine      Protein protection                    codA
  and carbon sink
Proline                    Substrate for mitochondrial     P5CS/P5CR
  respiration; redox control
Ectoine                   Osmoprotectant                                  EctA,BC
K+-transporters      High affinity K+ uptake                       Hkt1,Hak1
K+-channels            Low affinity or dual affinity               Akt1,Akt
  K+ uptake
H2O channel          Membrane cycling control                  TIP
   proteins
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expression and the obtained transgenic Arabidopsis plants 
were resistant to drought, cold and salinity (Kasuga et al. 
1999; Pellegrineschi et al. 2002, Puhakainen et al. 2004). 
Other related studies also provided a solid evidence for high 
efficiency of the above methodology.

Transferring a transcriptional element into Arabidopsis, 
which was thought previously not to be related to plant 
drought response many transgenic plants were obtained 
which were highly resistant to soil water deficits on the basis 
of selecting the Arabidopsis community with higher expres-
sion. By further introducing the members of this transcrip-
tional element family into soybean, transgenic soybean lines 
were cultured and they were resistant to soil water deficits 
in greenhouse and field. This indicated that the function 
of this transcriptional element family was characteristic of 
conservativeness among diverse plant species. So, it is pos-
sible to obtain expected same stress-resistant phenotype by 
genetically modifying transcriptional elements and reach 
the aim of improving plants efficiently and purposefully 

(Tang et al. 2003; Wang et al. 2003; Zhu et al. 2004; Shao et 
al. 2006d). Besides, some transcriptional elements not only 
regulate metabolic pathways, but also influence transport 
and allocation of secondary metabolites. Plant secondary 
metabolism plays an important role in plant responding to 
environmental stresses. Long-step progress has taken place 
in terms of introducing transcriptional elements to regulate 
targeted pathways.

It is important to remember the fact that some transcrip-
tional elements may regulate several metabolic pathways and 
one metabolic pathway may need orchestrated regulation from 
some transcriptional elements, which is the nature of plant 
gene regulatory network system (Shinozaki et al. 2003; Zhu 
2003; Zhu T 2003; Shao et al. 2006d). So, in some cases, only 
introducing a transcriptional element can not obtain targeted 
phenotype and may lead to metabolic unbalance in plants. In 
addition, because of coordinated evolution of transcriptional 
elements and their regulating metabolic pathways the geneti-
cally-modifying strategy for the same transcriptional element 

Figure 1. The basic draft for plant gene regulatory network system.
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could produce different phenotypes in different plant species. 
These issues need deeper exploration to establish an efficient 
genetically-modifying system by transcriptional elements and 
their network system for improving plant stress resistance 
and global eco-environment and feeding the world (Shao et 
al. 2006c).

Concluding remarks

Between plants and animals the most important difference 
is that plants are more easily influenced by environmental 
factors than animals. Consequently, plants have more refine 
mechanisms to regulate themselves from molecular level 
to ecosystem to respond to environmental changing. For 
instance, there are many coding-protein genes downstream 
only for osmotic regulation in abiotic stress resistance (Table 
2). By contrast, animals are more active and have the ability 
to escape from environmental stresses in most cases (Mey-
erowitz 2002; Wei et al. 2004).Under the above background, 
plants are quite different compared to animals in their gene 
regulatory network system (Wei et al. 2004). Nerve system-
based or nerve system-like-based structure and hormones are 
composed of the body for gene expression in animal network 
system, leading to animal activeness (Meyerowitz 2002; Shao 
et al. 2006d). In addition, developmental programming can 
not be easily effected by environmental cues (Munns 2005; 
Shao et al. 2005). Plants are always in the state of passiveness 
for confronting environmental succession and the related is-
sue is more complicated, which is the main cause that plants 
are behind animals in the study of most fields (Shao et al. 
2006d).

Charting plant gene regulatory network system under 
soil water deficits is a great challenge. Nowadays, there are 
indeed many favorable conditions for charting this blueprint, 
including much available data from Arabidopsis, rice, grass, 
yeast and fruit fly, but the range of tested plants is very much 
limited, many stress-responsive genes have not been unified 
in terms of their refine functions, and many genes participat-
ing in environmental stresses are interacted and overlapped, 
which have led to incorrect placing of key genes (gene effec-
tors) and signal molecules in the whole plant gene regulatory 
network system. Besides, much data are from under condition 
of one type of stresses. It is a fact that plants always confront 
more than two kinds of individual environmental stresses or 
their combination simultaneously in field (Soltani et al. 2004; 
Liu and Li 2005; Shao et al. 2005; Andrew et al. 2006; Yang 
et al. 2006; Yang and Zhang 2006). Although drawing this 
dimensional plant gene regulatory network system with great 
details and complete pathways is impossible currently, the 
basic draft for this blueprint could be summarized in Figure 
1. This draft was established in combination with recent ad-
vance in this hot topic and from the context of development, 
which will provide instructions for further investigation and 
insights into understanding of plant refine plasticity for abi-

otic environmental stresses.
In a word, precise elucidation of plant gene regulatory 

network system under abiotic stresses is of importance to 
molecularly engineering plant resistance, because of which 
many excellent scientists world-wide have been engaged in 
this frontier field, resulting in a long-step progress (Shao et al. 
2005, 2005b; Shao and Chu 2005).There are also many issues 
remained to be solved and needed to make efforts. Scope of 
tested plants needs to be extended; comprehensive study on 
a combination of environmental stress factors in laboratories 
and in field should be given much attention; system develop-
ment viewpoint and computer simulation analysis method 
should be also applied. With accumulation of data from being 
extended plant range, plant gene regulatory network system 
under environmental stresses will be clearer and clearer.
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